Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Total Environ ; 858(Pt 3): 159929, 2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2246411

ABSTRACT

Nitrogen pollution is one of the main reasons for water eutrophication. The difficulty of nitrogen removal in low-carbon wastewater poses a huge potential threat to the ecological environment and human health. As a clean biological nitrogen removal process, solid-phase denitrification (SPD) was proposed for long-term operation of low-carbon wastewater. In this paper, the progress, hotspots, and challenges of the SPD process based on different solid carbon sources (SCSs) are reviewed. Compared with synthetic SCS and natural SCS, blended SCSs have more application potential and have achieved pilot-scale application. Differences in SCSs will lead to changes in the enrichment of hydrolytic microorganisms and hydrolytic genes, which indirectly affect denitrification performance. Moreover, the denitrification performance of the SPD process is also affected by the physical and chemical properties of SCSs, pH of wastewater, hydraulic retention time, filling ratio, and temperature. In addition, the strengthening of the SPD process is an inevitable trend. The strengthening measures including SCSs modification and coupled electrochemical technology are regarded as the current research hotspots. It is worth noting that the outbreak of the COVID-19 epidemic has led to the increase of disinfection by-products and antibiotics in wastewater, which makes the SPD process face challenges. Finally, this review proposes prospects to provide a theoretical basis for promoting the efficient application of the SPD process and coping with the challenge of the COVID-19 epidemic.


Subject(s)
COVID-19 , Humans , Carbon
2.
J Environ Sci (China) ; 126: 827-835, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-1796515

ABSTRACT

As one typical cationic disinfectant, quaternary ammonium compounds (QACs) were approved for surface disinfection in the coronavirus disease 2019 pandemic and then unintentionally or intentionally released into the surrounding environment. Concerningly, it is still unclear how the soil microbial community succession happens and the nitrogen (N) cycling processes alter when exposed to QACs. In this study, one common QAC (benzalkonium chloride (BAC) was selected as the target contaminant, and its effects on the temporal changes in soil microbial community structure and nitrogen transformation processes were determined by qPCR and 16S rRNA sequencing-based methods. The results showed that the aerobic microbial degradation of BAC in the two different soils followed first-order kinetics with a half-life (4.92 vs. 17.33 days) highly dependent on the properties of the soil. BAC activated the abundance of N fixation gene (nifH) and nitrification genes (AOA and AOB) in the soil and inhibited that of denitrification gene (narG). BAC exposure resulted in the decrease of the alpha diversity of soil microbial community and the enrichment of Crenarchaeota and Proteobacteria. This study demonstrates that BAC degradation is accompanied by changes in soil microbial community structure and N transformation capacity.


Subject(s)
COVID-19 , Microbiota , Humans , Nitrogen , Soil , Benzalkonium Compounds/toxicity , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL